Senin, 11 Juli 2011

Reaksi Substitusi


Reaksi Substitusi

Reaksi substitusi adalah reaksi penggantian atom senyawa hidrokarbon oleh atom senyawa lain. Reaksi substitusi pada umumnya terjadi pada senyawa jenuh (alkana). Alkana dapat mengalami reaksi substitusi dengan halogen. Reaksi substitusi juga dapat diartikan sebagai  reaksi dimana berlangsung penggantian ikatan kovalen pada suatu atom karbon. Reagensia pengganti dan gugus lepas yang meninggalkan substrat dapat berupa nukleofil atau elektrofil (atau radikal bebas). Secara umum, reaksinya dapat dinyatakan sebagai berikut:

·         Reaksi secara umum:
R - H    +    X2    R – X     +    H – X
Alkana     halogen         haloalkana    asam klorida
·         Contoh:
CH3-CH3 (g) + Cl2 (g)  CH3-CH2-Cl (g)  +  HCl (g)
Etana             gas klor            kloroetana         asam klorida

Reaksi Substitusi Pada Senyawa Alifatik

Para pakar Kimia Organik fokus perhatiannya banyak ditujukan pada reaksi substitusi nukleofilik pada sistem alifatik. Hasil-hasil penelitian dalam bidang ini telah memberikan sumbangan yang besar terhadap kemajuan sintesis organik dan mekanisme reaksi. Nukleofil sendiri sinonim dengan basa Lewis, adalah suatu spesies netral atau anion yang mempunyai pasangan elektron bebas yang berada dalam orbital molekuler berenergi tinggi. Reaksi nukleofil dapat digolongkan menjadi reaksi nukleofi 1 (SN1), reaksi nukleofil 2 (SN2).

Mekanisme substitusi nukleofilik
Pada dasarnya terdapat 2 mekanisme substitusi nukleofilik yaitu : 
 Reaksi nukleofil 2 (SN 2)
Nukleofil menyerang dari belakang ikatan C-L. Pada satu keadaan (keadaan peralihan) nukleofil dan gugus bebas keduanya berasosiasi dengan karbon dimana substitusi terjadi. Pada saat gugus bebas membawa serta elektronnya nukleofil memberikan pasangan elektron lain. Lambang 2 digunakan untuk mekanisme kerja ini sebab reaksi ini adalah bimolekuler atau dua molekul, yaitu nukleofil dan substrat terlibat dalam 2 tahap kunci (memang hanya satu-satunya tahap) dalam mekanisme reaksi.
Adapun cara mengetahui suatu nukleofil dan substrat bereaksi dengan mekanisme SN2 yaitu :
1.      Karena nukleofil dan substrat terlibat, kecepatan reaksi bergantung pada konsentrasi kedua pereaksi tersebut. Reaksi ion hidroksida dengan etil bromide adalah salah satu contoh reaksi SN2. Jika konsentrasi basa (OH-) dilipat duakan, kita dapati bahwa reaksi berjalan dua kali lebih cepat.Hasil yang sama diperoleh jika konsentrasi etil bromide di lipatduakan. Akan kita lihat segera bahwa sifat kecepatan reaksi begini tidak terdapat pada proses SN1.
2.      Reaksi terjadi dengan pembalikan(inverse) konfigurasi. misalnya, jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol. ion hidroksida harus menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ke tiga gugus yang melekat pada karbon sp3 membalik. Jika OH menempati kedudukan yang samadengan Br, tentu (R)-2-butanol yang akan diperoleh.
jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau gugus primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan reaktivitas jika kita menggambarkan mekanisme SN2. Di bagian belakang karbon, tempat penggantian terjadi, keadaannya akan semakin berdesakan apabila gugus alkil yang melekat pada karbon yang membawa gugus pergi semakin banyak, sehingga reaksinya menjadi lambat.

Mekanisme SN1
mekanisme SN1 adalah proses dua tahap. pada tahap pertama, ikatan antara karbon dan gugus bebas putus, atau substrat terurai. electron – electron ikatan terlepas bersama dengan gugus bebas, dan terbentuklah ion karbonium. pada tahap kedua, yaitu tahap cepat, ion karbonium bergabung dengan nukleofil membentuk hasil.
Pada mekanisme SN1 substitusi terjadi dua tahap. Lambang 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. tahap ini tidak melibatkan nukleofil sama sekali. dikatakan, bahwa tahap pertama bersifat unimolekuler.
Adapun cara mengetahui suatu nukleofil dan substrat bereaksi dengan mekanisme SN2 yaitu :
1. kecepatan reaksi tidak bergantung pada konsentrasi nukleofil. Tahap penentu kecepatan adalah tahap pertama nukleofil tidak terlibat. Setelah tahap ini terjadi, ion karbonium bereaksi dengan nukleofil.
2. Jika karbon yang membawa gugus bebas bersifat kiral, reaksi mengakibatkan hilangnya aktivitas optic (yaitu, rasemisasi). Pada ion karbonium, hanya ada tiga gugus yang melekat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk datar.
 3. Jika substrat R-L bereaksi melalui mekanisme SN1, reaksi berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Reaksi SN1 berlangsung melalui ion karbonium, sehingga urutan kereaktifannya sama dengan urutan kemantapan ion karbonium. Reaksi bergantung lebih cepat jika ion karbonium lebih mudah terbentuk.

Jadi, reaksi substitusi nukleofilik terdiri dari dua jenis yaitu substitusi nukleofilik bimolekuler (Sn-2) dan substitusi nukleofilik unimo-lekuler (Sn-1). Reaktan yang lazim digunakan untuk reaksi substitusi nukleofilik adalah organo halida karena ion halogen (X") adalah mempakan nukleofil yang sangat lemah (gugus pergi) yang baik.

PERBANDINGAN MEKANISME SN1 DAN SN2


SN2
SN1
Stuktur Halida
Primer atau CH3
sekunder
tersier

Terjadi
Kadang – kadang
Tidak

Tidak
Kadang – kadang
Terjadi
Stereokimia
Pembalikan
Rasemisasi

Nukleofil
Kecepatan bergantung pada konsentrasi nukleofil, mekanisme memilih nukleofil anion
Kecepatan tidak bergantung pada konsentarsi nukleofil, mekanisme memilih nukleofil netral
Pelarut

Kecepatan sedikit dipengaruhi kepolaran pelarut
Kecepatan sangat dipengaruhi kepolaran pelarut

Tidak ada komentar:

Posting Komentar

Semoga bermanfaat..